- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Sangcheon (3)
-
Wheeldon, Ian (3)
-
Ramesh, Adithya (2)
-
Tafrishi, Aida (2)
-
Trivedi, Varun (2)
-
Aguilar, Yuna (1)
-
Arteaga, Anthony (1)
-
Carrera, Stephanie (1)
-
Harland-Dunaway, Marcus (1)
-
Jinkerson, Robert (1)
-
Lenert-Mondou, Chase (1)
-
Li, Mengwan (1)
-
Lonardi, Stefano (1)
-
Lupish, Brian (1)
-
Mohseni, Amirsadra (1)
-
Nguyen, Alexander (1)
-
Robertson, Nicholas R (1)
-
Robertson, Nicholas_R (1)
-
Schwartz, Cory (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling genotype–phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Traditional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation, allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome editing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review, we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which takes advantage of the natural traits of nonconventional yeast—fast growth rates, high stress tolerance, and novel metabolism—to create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance high-throughput CRISPR-enabled yeast engineering.more » « less
-
Robertson, Nicholas R; Trivedi, Varun; Lupish, Brian; Ramesh, Adithya; Aguilar, Yuna; Carrera, Stephanie; Lee, Sangcheon; Arteaga, Anthony; Nguyen, Alexander; Lenert-Mondou, Chase; et al (, Metabolic Engineering)Free, publicly-accessible full text available November 1, 2025
-
Ramesh, Adithya; Trivedi, Varun; Lee, Sangcheon; Tafrishi, Aida; Schwartz, Cory; Mohseni, Amirsadra; Li, Mengwan; Lonardi, Stefano; Wheeldon, Ian (, Communications Biology)Abstract High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeastYarrowia lipolyticaand acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest.more » « less
An official website of the United States government
